Biomechanical evaluation of immediate stability with rectangular versus cylindrical interbody cages in stabilization of the lumbar spine
نویسندگان
چکیده
BACKGROUND Recent cadaver studies show stability against axial rotation with a cylindrical cage is marginally superior to a rectangular cage. The purpose of this biomechanical study in cadaver spine was to evaluate the stability of a new rectangular titanium cage design, which has teeth similar to the threads of cylindrical cages to engage the endplates. METHODS Ten motion segments (five L2-3, five L4-5) were tested. From each cadaver spine, one motion segment was fixed with a pair of cylindrical cages (BAK, Sulzer Medica) and the other with paired rectangular cages (Rotafix, Corin Spinal). Each specimen was tested in an unconstrained state, after cage introduction and after additional posterior translaminar screw fixation. The range of motion (ROM) in flexion-extension, lateral bending, and rotation was tested in a materials testing machine, with +/- 5 Nm cyclical load over 10 sec per cycle; data from the third cycle was captured for analysis. RESULTS ROM in all directions was significantly reduced (p < 0.05) with both types of cages. There was no significant difference in reduction of ROM in flexion-extension (p = 0.6) and rotation (p = 0.92) between the two cage groups, but stability in lateral bending was marginally superior with the rectangular cages (p = 0.11). Additional posterior fixation further reduced the ROM significantly (p < 0.05) in most directions in both cage groups, but did not show any difference between the cage groups. CONCLUSIONS There was no significant difference in immediate stability in any direction between the threaded cylindrical cage and the new design of the rectangular cage with endplate teeth.
منابع مشابه
Stability After Anterior Lumbar Fusion with Interbody Cages: A Radiostereometric Evaluation
Background: Interbody cage stabilization as a stand-alone procedure in lumbar spine fusion is questioned due to inconsistent mechanical effects registered in human cadaveric studies. Even segmental mobility exceeding the normal range of motion is described after cage implantation. For the anterior interbody cage fusion, this potential, undesired destabilization is explained by the resection of ...
متن کاملComparison of Supplementary Posterior Fixations for Two-Level ALIF with Stand-Alone Cages
INTRODUCTION: Structural cages have been widely used in recent years to maintain motion segment height and stability in anterior lumbar interbody fusion (ALIF). High rate of clinical success and radiological fusion rate have been reported following single-level fusion using these cages. However, many biomechanical studies report insufficient stability, especially with extension loading. Posteri...
متن کاملSpinal Decompression and Stabilization: Expandable PLIF Cages over TLIF Cages for Spinal Fusion
Study design: An in vitro biomechanical flexibility and fatigue test comparing two different lumbar interbody fusion cages using mono segmental lumbar spine specimens. Objective: To investigate and compare the stabilizing effect of a transforaminal lumbar interbody fusion (TLIF) cage against an expandable posterior lumbar interbody fusion (PLIF) cage. Method: Six intact human lumbar spine segme...
متن کاملBiomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages.
BACKGROUND CONTEXT The lateral transpsoas approach to interbody fusion is gaining popularity because of its minimally invasive nature and resultant indirect neurologic decompression. The acute biomechanical stability of the lateral approach to interbody fusion is dependent on the type of supplemental internal fixation used. The two-hole lateral plate (LP) has been approved for clinical use for ...
متن کاملBiomechanical Analysis of Anterior Spinal Instrumentation Constructs for Lumbar Fusions
Corrective surgery for scoliosis with anterior instrumentation can be accomplished with different constructs: single rod, single rod with interbody cages and dual rods. These varying constructs are most often used in the lumbar spine to generate a fusion mass while retaining the natural lordosis of the lumbar region (Sweet, 1999). In a pediatric population or in smaller adults, two screws canno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Musculoskeletal Disorders
دوره 3 شماره
صفحات -
تاریخ انتشار 2002